Survival probability for open spherical billiards.
نویسندگان
چکیده
We study the survival probability for long times in an open spherical billiard, extending previous work on the circular billiard. We provide details of calculations regarding two billiard configurations, specifically a sphere with a circular hole and a sphere with a square hole. The constant terms of the long-time survival probability expansions have been derived analytically. Terms that vanish in the long time limit are investigated analytically and numerically, leading to connections with the Riemann hypothesis.
منابع مشابه
Slow relaxation in weakly open vertex-splitting rational polygons
The problem of splitting effects by vertex angles is discussed for nonintegrable rational polygonal billiards. A statistical analysis of the decay dynamics in weakly open polygons is given through the orbit survival probability. Two distinct channels for the late-time relaxation of type tδ are established. The primary channel, associated with the universal relaxation of ”regular” orbits, with δ...
متن کاملDesign of Hyperbolic Billiards
We formulate a general framework for the construction of hyperbolic billiards. Spherical symmetry is exploited for a simple treatment of billiards with spherical caps and soft billiards in higher dimensions. Other examples include the Papenbrock stadium.
متن کاملOpen Billiards: Invariant and Conditionally Iinvariant Probabilities on Cantor Sets
Billiards are the simplest models for understanding the statistical theory of the dynamics of a gas in a closed compartment. We analyze the dynamics of a class of billiards (the open billiard on the plane) in terms of invariant and conditionally invariant probabilities. The dynamical system has a horse-shoe structure. The stable and unstable manifolds are analytically described. The natural pro...
متن کاملAvoided-level-crossing statistics in open chaotic billiards.
We investigate a two-level model with a large number of open decay channels in order to describe avoided level crossing statistics in open chaotic billiards. This model allows us to describe the fundamental changes in the probability distribution of the avoided level crossings compared with the closed case. Explicit expressions are derived for systems with preserved and broken time-reversal sym...
متن کاملOn Chaotic Dynamics in Rational Polygonal Billiards
We discuss the interplay between the piece-line regular and vertex-angle singular boundary effects, related to integrability and chaotic features in rational polygonal billiards. The approach to controversial issue of regular and irregular motion in polygons is taken within the alternative deterministic and stochastic frameworks. The analysis is developed in terms of the billiard-wall collision...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2014